
Digital Object Identifier (DOI) 10.1007/s100520100685
Eur. Phys. J. C 20, 517–522 (2001) THE EUROPEAN

PHYSICAL JOURNAL C

Parton densities and dipole cross-sections
at small x in large nuclei

N. Armesto1, M.A. Braun2
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Abstract. Unintegrated gluon densities in nuclei, dipole-nucleus cross-sections and quark densities are
numerically investigated in the high-color limit, with the scattering on a heavy nucleus exactly described
by the sum of fan diagrams of BFKL pomerons. The initial condition for the evolution in rapidity is quickly
forgotten, and the gluon density presents a “supersaturation” pattern, as previous studies indicated. Both
dipole-nucleus cross-sections and quark densities present the expected saturation features. Identifying
the position in transverse momentum l of the maximum of the gluon distribution with the saturation
momentum Qs(y, b), at large rapidities all distributions depend on only one variable, l/Qs(y, b) or rQs(y, b).

1 Introduction

In view of the current and forthcoming experimental in-
vestigations of the strong interaction with heavy nuclei at
high energies, much attention has lately been devoted to
the theoretical study of parton distributions inside a heavy
nucleus at small values of the scaling variable x. It turned
out that a particularly transparent approach follows from
the color dipole picture [1,2], in which the interaction of
a probe with a target is presented via the interaction of
the latter with a color dipole, convoluted with the distri-
bution of color dipoles in the probe. In such a picture the
fundamental quantity is the cross-section σ(Y, r) for the
interaction of a color dipole of a given transverse radius
r with a target at a given rapidity Y . Much popularity
has been obtained by the idea of “saturation”, which in
terms of the cross-section σ implies that at high energies
the cross-section σ(Y, r) tends to a constant independent
of r [3]. A particular ansatz chosen in [3] for the scattering
of a dipole on the proton,

σp(Y, r) = σ0

(
1 − e−r̂2

)
, r̂ =

r

2R0(Y )
, (1)

with σ0 � 23 mb and R0 diminishing with increasing ra-
pidity Y , leads to a good description of the DIS data for
the proton below x = 0.01.

A less phenomenological treatment can be applied for
the heavy nucleus target. In the framework of the color
dipole model it follows that, in the high-color limit Nc →
∞, the scattering on a heavy nucleus is exactly described
by the sum of fan diagrams constructed of BFKL
pomerons, each of them splitting into two. The result-
ing equation for the color dipole cross-section on the nu-
cleus [4–7] was numerically solved in [7]. The gluon density

introduced in [7] revealed a “supersaturation” behavior,
tending to zero at any fixed momentum k as Y → ∞. As
a function of ln k it proved to have the form of a soliton
wave moving to the right with a constant velocity as Y in-
creases. A more ambitious project is currently developed
by the McLerran group, which can, in principle, lead to
a description which does not employ the large number of
colors limit [8–10]. Admitting that such an improvement
is highly desirable, we think that the Nc → ∞ approach is
much more feasible and can give a clear hint on the qual-
itative behavior of parton densities and cross-sections for
the heavy nucleus target.

In this paper we continue the study of the numeri-
cal solution of the BFKL fan diagram equation started in
[7], with more precision and more attention to rapidities
available at present or in the near future. We compare so-
lutions obtained from a purely theoretical initial function
(as in [7]) and from a phenomenologically supported one
(like (1)). We find that the initial form is very quickly for-
gotten by the equation, so that at rapidities of the order
10 the solution becomes independent of the chosen ini-
tial form. The behavior of the solution at large energies
is completely determined by the scale Qs(Y, b), depend-
ing on the energy and impact parameter b, at which the
gluon density reaches its maximum value, so that both the
parton densities and the dipole cross-section become uni-
versal functions of momentum or coordinate scaled with
Qs. One may consider Qs as a “saturation momentum”
such as introduced in [4,8,11]. The Y and b dependence
of Q which follow from our numerical studies can be fitted
by a simple formula:

lnQs = a+ cy + d ln[AT (b)], y =
Ncαs

π
Y, (2)
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with
c = 2.06, d = 0.62 ± 0.07,

Qs in GeV/c, and T (b) the nuclear profile function in
(GeV/c)−2 defined so that

∫
d2bT (b) = 1; thus, AT (b) ∝

A1/3. Note that the value of c is found to result in a value
lower than in our previous run devoted mostly to asymp-
totic energies and agrees with the predictions in [12] based
on asymptotic estimates. The somewhat unexpected value
of d seems to slightly depend on the choice of the ini-
tial function (hence the ±0.07). It implies that Qs ∝ Aα,
α � 2/9. The dipole cross-section on the nucleus at fixed
impact parameter exhibits the expected behavior, tending
to unity at each r as Y → ∞. The quark density follows
the pattern of saturation, tending to a constant value at
small momenta, in full agreement with the predictions of
[13].

2 The evolution equation
and initial conditions

As mentioned, in the color dipole approach the cross-sec-
tion of a probe (P ) on the nucleus (A) is presented via the
dipole cross-section:

σPA(Y ) =
∫

d2rρP (r)σA(Y, r). (3)

In its turn, the dipole cross-section on the nucleus is an
integral over the impact parameter:

σA(Y, r) = 2
∫

d2bΦ(Y, r, b), (4)

where evidently 2Φ has the meaning of a cross-section at
fixed impact parameter. The evolution equation in Y can
be most conveniently written for the function

φ(Y, r, b) =
1

2πr2
Φ(Y, r, b) (5)

in momentum space, where it reads [7]
(
∂

∂y
+HBFKL

)
φ(y, q, b) = −φ2(y, q, b), (6)

with a rescaled rapidity y given in (2) and HBFKL the
BFKL Hamiltonian.

Special attention has to be devoted to the initial func-
tion φ(y0, q, b) = φ0 at y = y0, from which value one is
starting the evolution. In the framework of the pure BFKL
approach, with Nc → ∞ and A fixed, one should choose
y0 = 0 (or any finite y) and take for φ0 the contribution of
the pure two gluon exchange with a single nucleon inside
the nucleus. If A is large (A1/3 of the same order as Nc)
then one should add all multiple interactions inside the
nucleus, which sum into a Glauber cross-section:

Φ0(r, b) = 1 − e−AT (b)σp(0,r). (7)

Here σp(0, r) is the dipole-proton cross-section generated
by the two-gluon exchange:

σp(0, r) =
1
2
g4

∫
d2r′G(0, r, r′)ρp(r′), (8)

where ρp(r) is the color dipole density in the proton and
G(0, r, r′) is the BFKL Green function at Y = 0:

G(0, r, r′) =
rr′

8π
r<

r>

(
1 + ln

r>

r<

)
, (9)

r>(<) = max(min){r, r′}.
Obviously the density ρp is non-perturbative and not
known. As in [7], to simplify the calculations we choose
ρp to be a normalized Yukawa distribution,

ρp(r) =
µ

2π
e−µr

r
, (10)

with µ = 0.3GeV adjusted to the nucleon radius value.
With (10) we find

AT (b)σp(0, r) = B [2C − 1 + 2 ln r̃ (11)

− Ei(−r̃) (
2 + r̃2

)
+ e−r̃(1 − r̃)

]
, r̃ = µr,

where C is the Euler constant and the dimensionless B
carries all the information about the nucleus. For Pb at
the center (b = 0) it reaches the value 0.12. Of course,
this choice of ρp may look rather arbitrary. We noted in
[7] that calculations demonstrated a certain indifference
of the evolution equation to the choice of the initial func-
tion at high enough y. To see this more clearly, in this run
we also used an alternative initial function, more adjusted
to the existing experimental data at comparatively small
rapidities. A natural choice would be to directly take (1).
However its analytic form makes it rather difficult to pass
to the momentum space employed in our method of evolu-
tion. Therefore we choose a slightly different form for the
phenomenologically motivated initial dipole cross-section
on the nucleon:

AT (b)σph
p = B

(
1 − e−r̂

)2
, (12)

with the same parameters as in [3] and Y0 corresponding
to x = 0.01. The cross-section in (12) has the same asymp-
totic behavior as that in (1), both at r → 0 and r → ∞.
For finite r it is slightly different, but this difference is not
too large and, after all, the choice (1) is also quite ad hoc.
Note that the asymptotic behavior of the phenomenologi-
cal cross-section is different from that of (11), which both
at r → 0 and r → ∞ contains an extra | ln r| factor. The
dimensionless B in (12) is found to result in a value sub-
stantially larger than for (11) and is of the order of 5 for
Pb at the center.

However, as we shall presently see, in spite of the dif-
ference both in the asymptotic behavior and in the overall
normalization, starting from y ∼ 2 the results of the evo-
lution begin to look practically identical for both choices
of the initial function, except for the overall scale Qs men-
tioned in the Introduction.
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Fig. 1. The gluon densities at the first stage of the evolution
y < 1, for a Pb target at b = 0. Solid and dashed curves show
the densities evolved from TIF and PIF at y = 0 respectively.
Curves from left to right correspond to y = 0.0, 0.4 and 1.0

3 The gluon density and dipole cross-sections

We define the gluon density as in [7]:

∂[xG(x, k2, b)]
∂2b∂k2 =

2Nc

πg2 k
2∇2

kφ(y, k, b) ≡ 2Nc

πg2 h(y, k, b),

(13)
with y = (Ncαs/π) ln(1/x). This definition follows the
logic of the BFKL approach in which it corresponds to
the average of two gluon fields in the nucleus, in the axial
gauge adopted in this approach. It also naturally appears
in the expression for the structure function of the nucleus
(see [7]). There exist different definitions of the gluon den-
sity in the literature (see [13]). We are not going to discuss
the problem of a “correct” gluon density here, since in any
case it is not a directly measurable quantity, but rather
serves to calculate the latter (see comments in [14]). From
a pragmatic point of view our definition is well supported,
since all observables can be directly related to (13).

The results of our evolution for the gluon density are
shown in Figs. 1 and 2. Not to bind ourselves to a partic-
ular value of the coupling constant αs, we rather present
h(y, k, b) as a function of the rescaled rapidity y. The ac-
tual gluon density at physical rapidity is obtained after
rescaling both h and y according to (2) and (13).

In Fig. 1 we show the gluon densities at the first stage
of the evolution up to y = 1, starting from the initial
functions corresponding to the Glauberized two-gluon ex-
change contribution (11) (theoretical initial function, TIF)
and to the phenomenological cross-section (12) (pheno-
menological initial function, PIF), respectively. One ob-
serves a large difference between the two at the beginning
of the evolution, which, however, is gradually disappear-

Fig. 2. Gluon densities at y = 2.2 and 4.0, for a Pb target at
b = 0 and b = 0.98RA, both for TIF (solid curves) and PIF
(dashed curves) as initial functions, plotted against k/Qs(y, b)

ing. Starting from y ∼ 2 the form of the gluon distribution
becomes practically identical for both initial functions. We
introduce Qs(y, b) as the momentum at which the density
reaches its maximum. For the two initial functions a nu-
merical fit gives (2) with a = −2.21 (−0.88), c = 2.09
(2.04) and d = 0.69 (0.55) for TIF (PIF). Plotted against
k/Qs(y, b) the gluon distributions for both initial func-
tions and for all values of b and y > 2 practically fall onto
a universal curve. The degree of universality is illustrated
in Fig. 2 where we present the gluon densities for both TIF
and PIF at y = 2.4 and 4, and at b = 0 and b = 0.98RA,
for the Pb target. Some differences in the curves are cer-
tainly visible, which however diminish as y grows. The
form of the universal curve can be fitted by an expression

h(ξ) = 0.295 exp
(

− (ξ − ξ0)2

4 · 0.869
)
, ξ = ln k,

ξ0 = lnQs(y, b) (14)

(all momenta in GeV/c), from which one observes that the
density falls as a function of momentum both at k → 0
and k → ∞.

The gluon density (13) is trivially related to the dipole
cross-section on the nucleus at fixed b:

Φ(y, r, b) = 1 −
∫

d2k

2πk2h(y, k, r)e
ikr. (15)

So, to determine Φ, all one has to do is to perform a Bessel
transform of h/k. Figure 3 shows the dipole cross-sections
at low rapidities. At larger rapidities y > 2 the scaling
properties of h imply that Φ becomes a universal function
of rQs(y, b). Its form is illustrated in Fig. 4, where we show
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Fig. 3. The dipole cross-sections Φ(r) at the first stage of
the evolution y < 1, for a Pb target at b = 0. Solid and
dashed curves show the cross-sections for TIF and PIF as ini-
tial functions respectively. Curves from right to left correspond
to y = 0.0, 0.4 and 1.0

Φ(r) for Pb at b = 0 and y = 3.4 (for PIF). It can be fitted
with the formula

Φ(r) =
[
1 − exp

(−ω2r2
)1/δ

]δ

,

ω = 198.5GeV/c,
δ = 5.48. (16)

4 The quark density

The definition of the quark density can be taken from [13]:

∂[xq(x, l, b)]
∂2l∂2b

=
αsQ

2

(2π)3

∫ 1

0
dαd2b1d2b2e−il(b1−b2)

[ (
α2 + (1 − α)2

)
ε2

×b1b2

b1b2
K1(εb1)K1(εb2) + 4Q2α2(1 − α)2K0(εb1)K0(εb2)

]

×
∫

d2k

(2π)2
1
k2

∂[xG(x, k, b)]
∂2b∂k2

×
[
1 + e−ik(b1−b2) − e−ikb1 − eikb2

]
, (17)

with ε2 = Q2α(1−α). This definition is based on the form
of the interaction with the target of a virtual current which
splits into a qq̄ pair. For the small x region one may also
raise objections as to its physical meaning, since then the
interference diagram gives a non-zero contribution [14].
However, for lack of a better definition, we shall use (17).

Fig. 4. The dipole cross-sections Φ(r) at y = 3.4 for a Pb at
b = 0, with PIF as initial function

Performing part of the integrations and using (13), we
express the quark density as

∂[xq(x, l, b)]
∂2l∂2b

= π4f(y, l, b), (18)

where y = (Ncαs/π) ln(1/x) and the function f , indepen-
dent of the coupling constant, is given by an integral over
momenta:

f(y, l, b) =
Nc

8π8

∫ ∞

0

dk
k
h(y, k, b)I(l, k). (19)

Here I is the sum of transversal (T) and longitudinal (L)
parts, with

IT = Q2
∫ 1

0
dα

[
α2 + (1 − α)2

]
× [(

2ε2 + k2)χλ− ε2
(
ε2 + l2 + k2)χ3 − ε2λ2] (20)

and

IL = 4Q4
∫ 1

0
dα2α(1 − α)2

× [(
ε2 + l2 + k2)χ3 + λ2 − 2χλ

]
, (21)

where

λ =
1

ε2 + l2
,

χ =
1√

(ε2 + (l + k)2) (ε2 + (l − k)2)
. (22)

Note that the quark density defined by (17)–(22) de-
pends (weakly) on the virtuality of the probe Q2. Phys-
ically meaningful results correspond to the limiting case



N. Armesto, M.A. Braun: Parton densities and dipole cross-sections at small x in large nuclei 521

Fig. 5. The quark densities f(l) at the first stage of the evo-
lution y < 1, for a Pb target at b = 0. Solid and dashed curves
show the quark densities for TIF and PIF as initial functions
respectively. Curves from left to right correspond to y = 0.0,
0.4 and 1.0

Q2 → ∞. In this limit the longitudinal part of I gives no
contribution and in the transversal part the integration
over α is reduced to that over ε2:

Q2
∫ 1

0
dα

[
α2 + (1 − α)2

] → 2
∫ ∞

0
dε2, (23)

so that I and f become independent of Q2.
These formulas give the quark density in terms of the

gluon density, that is, in terms of the function h, which
we have found numerically. Doing the integration over k
in (19) also numerically, we obtain the function f and
therefore the quark density related to it by a factor (see
(18)). Our results for the quark density (in fact for f) are
presented in Figs. 5 and 6. As before, in Fig. 5 we show the
quark densities at the beginning of the evolution for the
initial functions TIF and PIF respectively. At higher y > 2
and due to the scaling properties of the gluon density,
the quark density also becomes a universal function of
l/Qs(y, b). Its form is illustrated in Fig. 6, where we show
f(l) for Pb at b = 0 and y = 3.6 (for PIF). It can be fitted
by

f(t) =
Nc

2π8

[
1 − exp

(−t1/β
)]β

t
,

t = 2
(

l

511.0 GeV/c

)2

, β = 2.44. (24)

Note that at l → 0 the quark densities tend to a constant
value in agreement with the prediction of Mueller [13]:

∂[xq(x, l, b)]
∂2l∂2b

−→l→0
Nc

2π4 , (25)

Fig. 6. The quark densities f(l) at y = 3.6 for a Pb at b = 0,
with PIF as initial function

which implies

f(l) −→l→0 1.58 · 10−4;

at l → ∞ they acquire a perturbative form (∝ 1/l2).

5 Discussion

The new run of numerical investigations of the BFKL fan
diagram equation for the gluon density in heavy nuclei
fully confirms our previous conclusions [7]. The key one is
that at rapidities of the order 10 the density forgets its ini-
tial form and becomes a universal function of momentum
scaled by the saturation momentum Qs(y, b). The latter
grows as a power of energy and as Aα with α of the or-
der of 2/9. Both the dipole-nucleus cross-section and the
quark density behave in agreement with a general idea
of saturation, tending to a known constant (unity for the
dipole cross-section at fixed impact parameter) as rapidity
grows.

Numerical studies, as well as experimental ones, need
confirmation from independent groups. To our knowledge,
up to now there appeared only two papers devoted to the
solution of the non-linear BFKL equation, both of them
for the nucleon target. In [15] a simple Padé technique
is used to solve the non-linear equation obtained in [6].
Employing for the linear case a solution which embodies
both BFKL and DGLAP behavior and a running cou-
pling constant, the authors present results for the inte-
grated gluon distribution at Large Hadron Collider ener-
gies, finding a suppression effect, due to the non-linearity,
of a factor ∼ 2. More appropriate for comparison with our
results are those of [16], in which an iteration technique
in coordinate space was used and results for the dipole
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cross-sections were shown. The chosen initial function is
different from both our choices. It attempts to include the
DGLAP evolution at the initial stage. We are not going
to discuss here the viability of such an attempt for the nu-
cleus target. Still our results show that at rapidities stud-
ied in [16], of the order of 12 ÷ 15, which with αs = 0.25
mean y ∼ 3.3÷3.8, the dipole cross-sections Φ(r) (Ñ(r) in
the notation of [16]) should become a universal function
of r̄ = rQs. The comparison indicates that although the
general behavior of Φ found in [16] well agrees with ours,
the universality in the r̄ behavior is not observed there.
The slope of their curves in ln r̄ is steeper than for our
universal curve and this difference grows with rapidity1.
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